Notebookcheck Logo

Nvidia RTX 500 Ada Generation Laptop GPU

NVIDIA Nvidia RTX 500 Ada Generation Laptop GPU

The Nvidia RTX 500 Ada Generation, not to be confused with the A500, P500 and the T500, is a lower-end professional graphics card for use in laptops that sports 2,048 CUDA cores and a paltry 4 GB of GDDR6 VRAM. We believe this graphics card to be a heavily cut-down GeForce RTX 4050 Laptop; therefore, both should employ the Ada Lovelace AD107 chip built with TSMC's 5 nm process. The RTX 500 was launched in February 2024. The Nvidia-recommended TGP range for this graphics card is moderately wide at 35 W to 60 W [the second figure includes the Dynamic Boost, it seems] leading to noticeable performance differences between different systems powered by what is supposed to be the same graphics card.

Quadro series graphics cards ship with much different BIOS and drivers than GeForce cards and are targeted at professional users rather than gamers. Commercial product design, large-scale calculations, simulation, data mining, 24 x 7 operation, certified drivers - if any of this sounds familiar, then a Quadro card will make you happy.

Architecture and Features

Ada Lovelace brings a range of improvements over older graphics cards utilizing the outgoing Ampere architecture. It's not just a better manufacturing process and a higher number of CUDA cores that we have here; under-the-hood refinements are plentiful, including an immensely larger L2 cache, an optimized ray tracing routine (a different way to determine what is transparent and what isn't is used), and other changes. Naturally, these graphics cards can both encode and decode some of the most widely used video codecs, AVC, HEVC and AV1 included; they also support a host of proprietary Nvidia technologies, including Optimus and DLSS 3, and they can certainly be used for various AI applications.

The RTX 500 Ada features 16 RT cores of the 3rd generation, 64 Tensor cores of the 4th generation and 2,048 CUDA cores. Increase those numbers by 25%, and you get the RTX 1000 Ada - as long as we pay no attention to clock speed differences, of course. Unlike costlier Ada Generation professional laptop graphics cards, the RTX 500 comes with just 4 GB of non-ECC VRAM; the lack of error correction makes this card less suitable for super-important tasks and round-the-clock operation. The VRAM is just 64-bit wide, delivering an anemic bandwidth of ~128 GB/s.

The RTX 500 Ada Generation makes use of the PCI-Express 4 protocol, just like Ampere-based cards did. 8K SUHD monitors are supported, however, DP 1.4a video outputs may prove to be a bottleneck down the line.

Performance

At 50 W (35 W + 15 W Dynamic Boost), the graphics card can handle most 2023 and 2024 games like Baldur's Gate 3 at 1080p on high graphics settings. With a Geekbench 6.2 OpenCL GPU score of 61,500 points and a Blender v3.3 Classroom CUDA score of 71 seconds, it's clear the Ada is so much faster than any integrated GPUs on the market including the 890M.

Power consumption

With the latest Nvidia graphics cards, laptop makers are free to set the TGP according to their needs within a fairly wide range. With the RTX 500 Ada, we have the lowest value recommended sitting at just at 35 W while the highest value is 60 W [this most likely includes Dynamic Boost]. Real-world performance of the slowest RTX 500 Ada will probably be around 40% lower than that of the fastest one.

Last but not the least, the improved 5 nm process (TSMC 4N) the AD107 chip is built with makes for decent energy efficiency, as of early 2024.

RTX Ada Generation Laptop GPU Series

NVIDIA RTX 5000 Ada Generation Laptop GPU compare 9728 @ 0.93 - 1.68 GHz256 Bit @ 20000 MHz
NVIDIA RTX 4000 Ada Generation Laptop GPU compare 7424 192 Bit @ 16000 MHz
NVIDIA RTX 3500 Ada Generation Laptop GPU compare 5120 192 Bit @ 16000 MHz
NVIDIA RTX 3000 Ada Generation Laptop GPU compare 4608 128 Bit @ 16000 MHz
NVIDIA RTX 2000 Ada Generation Laptop GPU compare 3072 128 Bit @ 16000 MHz
Nvidia RTX 1000 Ada Generation Laptop GPU compare 2560 96 Bit @ 16000 MHz
Nvidia RTX 500 Ada Generation Laptop GPU 2048 64 Bit @ 12000 MHz
ArchitectureAda Lovelace
Pipelines2048 - unified
TMUs64
ROPs32
Raytracing Cores16
Tensor / AI Cores64
Memory Speed12000 effective = 1500 MHz
Memory Bus Width64 Bit
Memory TypeGDDR6
Max. Amount of Memory4 GB
Shared Memoryno
Memory Bandwidth128 GB/s
APIDirectX 12 Ultimate, Shader 6.7, OpenGL 4.6, OpenCL 3.0, Vulkan 1.3
Power Consumption60 Watt (35 - 60 Watt TGP)
technology5 nm
PCIe4.0 x16
Displays4 Displays (max.), HDMI 2.1, DisplayPort 1.4a
Notebook Sizemedium sized
Date of Announcement27.02.2024
Link to Manufacturer Pageimages.nvidia.com

Benchmarks

3DMark Vantage
3DM Vant. Perf. total +
3DM Vant. Perf. GPU no PhysX +
3DMark 06 3DMark 06 - Standard 1280x1024 +
SPECviewperf 13 specvp13 sw-04 +
specvp13 snx-03 +
specvp13 showcase-02 +
specvp13 medical-02 +
specvp13 maya-05 +
specvp13 energy-02 +
specvp13 creo-02 +
specvp13 catia-05 +
specvp13 3dsmax-06 +
SPECviewperf 2020 specvp2020 solidworks-07 1080p +
specvp2020 solidworks-05 1080p +
specvp2020 snx-04 1080p +
specvp2020 medical-03 1080p +
specvp2020 maya-06 1080p +
specvp2020 energy-03 1080p +
specvp2020 creo-03 1080p +
specvp2020 catia-06 1080p +
specvp2020 3dsmax-07 1080p +
Cinebench R15
Cinebench R15 OpenGL 64 Bit +
Cinebench R15 OpenGL Ref. Match 64 Bit +
Power Consumption - Furmark Stress Test Power Consumption - external Monitor *
78.7 Watt (11%)
05101520253035404550556065707580Tooltip
- Range of benchmark values for this graphics card
red legend - Average benchmark values for this graphics card
* Smaller numbers mean a higher performance

Game Benchmarks

The following benchmarks stem from our benchmarks of review laptops. The performance depends on the used graphics memory, clock rate, processor, system settings, drivers, and operating systems. So the results don't have to be representative for all laptops with this GPU. For detailed information on the benchmark results, click on the fps number.

F1 24

F1 24

2024
low 1920x1080
112.9  fps    + Compare
med. 1920x1080
80.8  fps    + Compare
high 1920x1080
26.5  fps    + Compare
ultra 1920x1080
16  fps    + Compare
QHD 2560x1440
22  fps    + Compare
» With all tested laptops playable in detail settings med..
low 1920x1080
56.4  fps    + Compare
med. 1920x1080
47.1  fps    + Compare
high 1920x1080
40.2  fps    + Compare
ultra 1920x1080
30.9  fps    + Compare
QHD 2560x1440
22  fps    + Compare
» With all tested laptops playable in detail settings high.
low 1920x1080
42  fps    + Compare
med. 1920x1080
38  fps    + Compare
high 1920x1080
32  fps    + Compare
ultra 1920x1080
20  fps    + Compare
» With all tested laptops playable in detail settings med..
low 1920x1080
88  fps    + Compare
med. 1920x1080
78  fps    + Compare
high 1920x1080
58  fps    + Compare