Notebookcheck

NVIDIA Quadro T2000 Max-Q

The Nvidia Quadro T2000 with Max-Q Design is a professional mobile graphics card that is based on the Turing architecture (TU117 chip). It is based on the consumer desktop GTX 1650 Ti therefore currently between a mobile GTX 1650 and GTX 1660 Ti. The chip is manufactured in 12nm FinFET at TSMC. Compared to the normal Quadro T2000, the Max-Q variants are clocked lower and work in a more efficient state. Currently, we know of two variants with different clock speeds and power consumptions (35 and 40 W).

ModelShaderTGP (W)Base (MHz)Boost (MHz)
Quadro T2000 Mobile10246015751785
Quadro T2000 Max-Q10244012001620
Quadro T2000 Max-Q1024359301500
GeForce GTX 1650 Ti (Desktop)102475?15301725
GeForce GTX 1660 Ti Mobile15368014551590
GeForce GTX 1650 Mobile8965013951560

The Turing generation did not only introduce raytracing for the RTX cards, but also optimized the architecture of the cores and caches. According to Nvidia the CUDA cores offer now a concurrent execution of floating point and integer operations for increased performance in compute-heavy workloads of modern games. Furthermore, the caches were reworked (new unified memory architecture with twice the cache compared to Pascal). This leads to up to 50% more instructions per clock and a 40% more power efficient usage compared to Pascal.

The performance in professional apps should be clearly lower than a normal (Max-P) Quadro T2000 due to the lower clock speeds, but still ahead the slower Quadro T1000 due to the higher shader count. Compared to consumer cards, the mobile GTX 1650 should be still slower.

Thanks to the relative low power consumption of the Quadro T2000 Max-Q, the GPU is suited for thin and light laptops. The used TU116 chip is manufactured in 12nm FFN at TSMC.

ManufacturerNVIDIA
Quadro Turing Series
Quadro RTX 6000 (Laptop) (compare) 4608 384 Bit @ 14000 MHz
Quadro RTX 5000 (Laptop) (compare) 3072 @ 1035 / 1350 - 1545 / 1770 (Boost) MHz256 Bit @ 14000 MHz
Quadro RTX 5000 Max-Q (compare) 3072 @ 600 - 930 - 1350 - 1455 (Boost) MHz256 Bit @ 14000 MHz
Quadro RTX 4000 (Laptop) (compare) 2560 @ 1110 - 1560 (Boost) MHz256 Bit @ 14000 MHz
Quadro RTX 4000 Max-Q (compare) 2560 @ 780 - 960 - 1380 - 1485 (Boost) MHz256 Bit @ 14000 MHz
Quadro RTX 3000 (Laptop) (compare) 1920 @ 945 - 1380 (Boost) MHz192 Bit @ 14000 MHz
Quadro RTX 3000 Max-Q (compare) 1920 @ 600 - 870 - 1215 - 1380 (Boost) MHz192 Bit @ 14000 MHz
Quadro T2000 (Laptop) (compare) 1024 @ 1575 - 1785 (Boost) MHz128 Bit @ 8000 MHz
Quadro T2000 Max-Q 1024 @ 930 / 1200 - 1500 / 1620 (Boost) MHz128 Bit @ 8000 MHz
Quadro T1000 (Laptop) (compare) 768 @ 1395 - 1455 (Boost) MHz128 Bit @ 8000 MHz
Quadro T1000 Max-Q (compare) 768 @ 795 / 1230 - 1455 (Boost) MHz128 Bit @ 8000 MHz
CodenameN19P-Q3 MAX-Q
ArchitectureTuring
Pipelines1024 - unified
Core Speed930 / 1200 - 1500 / 1620 (Boost) MHz
Memory Speed8000 MHz
Memory Bus Width128 Bit
Memory TypeGDDR5
Max. Amount of Memory4096 MB
Shared Memoryno
DirectXDirectX 12_1
Transistor Count4700 Million
technology12 nm
Notebook Sizemedium sized
Date of Announcement27.05.2019

Benchmarks

3DMark Vantage
P Result 1280x1024 +
P GPU no PhysX 1280x1024 +
3DMark 06 Standard 1280x1024 +
SPECviewperf 12
Solidworks (sw-03) 1900x1060 +
Siemens NX (snx-02) 1900x1060 +
Showcase (showcase-01) 1900x1060 +
Medical (medical-01) 1900x1060 +
Maya (maya-04) 1900x1060 +
Energy (energy-01) 1900x1060 +
Creo (creo-01) 1900x1060 +
Catia (catia-04) 1900x1060 +
3ds Max (3dsmax-05) 1900x1060 +
SPECviewperf 13 Solidworks (sw-04) +
Siemens NX (snx-03) +
Showcase (showcase-02) +
Medical (medical-02) +
Maya (maya-05) +
Energy (energy-02) +
Creo (creo-02) +
Catia (catia-05) +
3ds Max (3dsmax-06) +
Cinebench R10 Shading 32Bit +
Cinebench R11.5 OpenGL 64Bit +
Cinebench R15
OpenGL 64Bit +
Ref. Match 64Bit +
GFXBench (DX / GLBenchmark) 2.7
T-Rex HD Offscreen C24Z16 1920x1080 +
T-Rex HD Onscreen C24Z16 +