NVIDIA GeForce GT 415M

The NVIDIA GeForce GT 415M is a fast mid-range laptop graphics card presented in 2010. It is based on the GF108 core, which is related to the Fermi architecture. Therefore, it supports DirectX 11 and OpenGL 4.0. In contrast to the GT 420M, the card features only 48 of the 96 shader cores. Therfore the performance should be clearly below the GT 420M (as both feature the same clock rates). However, Nvidia still classifies the card in the performance class (the GeForce 310M is Mainstream). As graphics memory, the GT 415M supports only (G)DDR3 and no GDDR5.
GF108 architecture
The GF108 core of the GT 415M is related to the GF100 core of the GeFore GTX 480M and offers 96 shaders and a 128 Bit memory bus for DDR3. Except for the memory controllers the GF108 can basically be considered a halved GF106. Therefore, the architecture is not comparable to the old GT215 (e.g., GeForce GTS 350M) or GT216 (e.g., GeForce GT 330M) cores. Unlike the GF100 the smaller GF104, GF106, and GF108 core were not only shortened, but also considerably modified. In contrast to the GF100, which was designed for professional applications, these chips target the consumer market. They feature more shaders (3x16 instead of 2x16), more texture units (8 instead of 4) and SFUs per streaming multi-processor (SM). As there are still only 2 warp schedulers (versus 3 shader groups), Nvidia now uses superscalar execution to use the higher amount of shaders per SM more efficiently. In theory, the shaders can thereby be utilized more efficiently and the performance per core is improved. However, in worst case scenarios the performance can also be worse than of the GF100 (and its predecessors). The ECC memory protection, which is important for professional applications, was completely omitted and the FP64 hardware shortened (only 1/3 of the shader are FP64-capable and therewith only 1/12 of the FP32’s performance). Because of these cutbacks, the size of the SM grew only by 25% despite the higher number of shaders and larger warp schedulers with superscalar dispatch capabilities. Due to the different shader architectures and the higher clock rate of the shader domain, the core count can not be directly compared to AMD cores of the Radeon 5000 series (e.g. HD 5650).
Detailed information on the GF104 architecture (and therewith also the GF106 and GF108) can be found in the desktop GTX 460 article by Anandtech.
Performance
Because the GeForce GT 415M features a new architecture, the performance is not comparable to older chips with a similar core count. As the GeForce GT 420M showed a smiliar performance as the old GT 330M (in our tests with a pre-sample), the performance of the GT 415M should below, approximately the level of the GeForce GT 320M / Mobility Radeon HD 4570.
Features
A novelty of the GF104/106/108 chips is the support of Bitstream HD Audio (Blu-Ray) output via HDMI. Alike the Radeon HD 5470, the GT 415M can transfer Dolby True HD and DTS-HD bitstream-wise without quality loss to a HiFi receiver.
The GT415M offers the PureVideo HD technology for video decoding. The included Video Processor 4 (VP4) supports feature set C and therefore the GPU is able to fully decode MPEG-1, MPEG-2, MPEG-4 Part 2 (MPEG-4 ASP - e.g., DivX or Xvid), VC-1/WMV9, and H.264 (VLD, IDCT, Motion Compensation, and Deblocking).
Furthermore, the GPU is able to decode two 1080p streams simultaneously (e.g. for Blu-Ray Picture-in-Picture).
Through CUDA, OpenCL, and DirectCompute 2.1 support the GeForce GT 415M can be of help in general calculations. For example, the stream processor can considerably faster encode videos than a fast CPU can. Furthermore, physics calculations can be done by the GPU using PhysX (e.g. supported by Mafia 2 or Metro 2033).
Without load, the chip is clocked at 50/100/135 MHz (chip/shader/memory) in 2D respectively 200/400/325 in 3D mode to save power. Furthermore, the 400M series supports Optimus to automatically switch between the integrated graphics card from Intel and the Nvidia GPU. However, the laptop manufacturers need to implement it and it cannot be upgraded.
GeForce GT 400M Series
| ||||||||||||||||
Codename | N11P-GV | |||||||||||||||
Architecture | Fermi | |||||||||||||||
Pipelines | 48 - unified | |||||||||||||||
Core Speed | 500 MHz | |||||||||||||||
Shader Speed | 1000 MHz | |||||||||||||||
Memory Speed | 800 MHz | |||||||||||||||
Memory Bus Width | 128 Bit | |||||||||||||||
Memory Type | (G)DDR3 | |||||||||||||||
Shared Memory | no | |||||||||||||||
API | DirectX 11, Shader 5.0 | |||||||||||||||
technology | 40 nm | |||||||||||||||
Features | Optimus Support, PureVideo HD VP4, Blu-Ray 3D, Bitstream HD Audio, CUDA, DirectCompute, OpenCL, OpenGL 4.0, DirectX 11 | |||||||||||||||
Notebook Size | medium sized | |||||||||||||||
Date of Announcement | 03.09.2010 | |||||||||||||||
Link to Manufacturer Page | www.nvidia.com |
Benchmarks

* Smaller numbers mean a higher performance
Game Benchmarks
The following benchmarks stem from our benchmarks of review laptops. The performance depends on the used graphics memory, clock rate, processor, system settings, drivers, and operating systems. So the results don't have to be representative for all laptops with this GPU. For detailed information on the benchmark results, click on the fps number.

Fifa 11
2010low | med. | high | ultra | QHD | 4K | |
---|---|---|---|---|---|---|
Fifa 11 | 203.5 | 94.6 | 60.6 | |||
Risen | 31.3 | 15.3 | 8.8 | |||
Need for Speed Shift | 18.7 | 16.7 | ||||
Colin McRae: DIRT 2 | 46.2 | 30.2 | 15.7 | |||
Call of Duty 4 - Modern Warfare | 97.5 | 37.6 | ||||
< 30 fps < 60 fps < 120 fps ≥ 120 fps | 2 1 1 | 2 2 1 | 3 1 | | | |
For more games that might be playable and a list of all games and graphics cards visit our Gaming List
Notebook reviews with NVIDIA GeForce GT 415M graphics card
Asus U31JG-A1: Intel Core i3-380M, 13.30", 1.9 kg
External Review » Asus U31JG-A1
Asus P31JG-RO157X: Intel Core i3-380M, 13.30", 1.8 kg
External Review » Asus P31JG-RO157X
Asus N73Jg: Intel Core i5-540M, 17.30", 3.4 kg
External Review » Asus N73Jg