HP Omen Transcend 16 laptop review: More than just a small name difference
The Omen Transcend 16 is a variant of the standard Omen 16. Though they utilize similar chassis designs and materials, the Omen Transcend 16 boasts several important differences that potential buyers ought to be aware of.
Our specific review unit is the highest configuration available with the 13th gen Raptor Lake Core i9-13900HX CPU, 130 W GeForce RTX 4070 GPU, and a QHD+ (2560 x 1600) 240 Hz mini-LED display with full DCI-P3 colors for approximately $2500 USD retail. Lesser SKUs are available with the Core i7-13700HX, RTX 4050 GPU, and 165 Hz 1200p IPS for approximately $1250.
Competitors in this space include other high-end 16-inch gaming laptops like the Lenovo Legion Slim 7i 16 G8, Acer Nitro 16, Alienware x16 R1, or the Asus ROG Zephyrus M16.
More HP reviews:
Are you a techie who knows how to write? Then join our Team! Wanted:
- News translator (DE-EN)
- Review translation proofreader (DE-EN)
Details here
Potential Competitors in Comparison
Rating | Date | Model | Weight | Height | Size | Resolution | Price |
---|---|---|---|---|---|---|---|
87.9 % v7 (old) | 08 / 2023 | HP Omen Transcend 16 i9-13900HX, NVIDIA GeForce RTX 4070 Laptop GPU | 2.3 kg | 19.8 mm | 16.00" | 2560x1600 | |
90 % v7 (old) | 07 / 2023 | Lenovo Legion Slim 7i 16 Gen 8 i9-13900H, NVIDIA GeForce RTX 4070 Laptop GPU | 2.1 kg | 19.9 mm | 16.00" | 2560x1600 | |
87.4 % v7 (old) | 06 / 2023 | HP Omen 16-wf000 i7-13700HX, NVIDIA GeForce RTX 4080 Laptop GPU | 2.4 kg | 23.6 mm | 16.10" | 2560x1440 | |
88.4 % v7 (old) | 06 / 2023 | Alienware x16 R1 i9-13900HK, NVIDIA GeForce RTX 4080 Laptop GPU | 2.6 kg | 18.57 mm | 16.00" | 2560x1600 | |
88.1 % v7 (old) | 06 / 2023 | Acer Nitro 16 AN16-41 R7 7735HS, NVIDIA GeForce RTX 4070 Laptop GPU | 2.7 kg | 27.9 mm | 16.00" | 2560x1600 | |
87.8 % v7 (old) | 02 / 2023 | Asus ROG Zephyrus M16 GU603Z i9-12900H, GeForce RTX 3070 Ti Laptop GPU | 2.1 kg | 19.9 mm | 16.00" | 2560x1600 |
Case — Same Materials, Different Dimensions
One of the biggest external differences between the Omen 16 and Omen Transcend 16 is the move from 16:9 to 16:10 and so their footprints are slightly different. Otherwise, both models share similar metal materials and texture. It's worth noting that the bezel along the bottom edge of the screen is not any narrower than the regular Omen 16 despite the change in aspect ratio.
The new 16:10 form factor makes the Omen Transcend 16 squarer than the regular Omen 16 but with an overall thinner profile by almost 4 mm. It's a bit lighter as a result, but it's still not nearly as light as the Asus ROG Zephyrus M16 or Lenovo Legion Slim 7i 16 G8.
Connectivity
Port options remain identical to the Omen 16 despite the physical changes noted above. Nonetheless, it would have at least been nice to see an upgrade from 1 Gbps RJ-45 to 2.5 Gbps.
Communication
An Intel AX211 comes standard for Wi-Fi 6E and Bluetooth 5.3 connectivity. We experienced steady and reliable transfer rates when paired to our Asus AXE11000 6GHz network.
Webcam
IR is included for Hello support whereas it is absent on the regular Omen 16. The 2 MP webcam and privacy shutter are otherwise the same between the two Omen models.
Maintenance
The bottom panel is secured by just six Phillips screws for easy access. One notable change from the Omen 16, however, is the removal of the second M.2 SSD slot due to the repositioned M.2 WLAN slot as shown by the comparison images below. Thus, the Omen Transcend 16 can only support up to one internal SSD instead of two. Other minor adjustments have also been made to the speakers and cooling solution.
Accessories And Warranty
Certain configurations include a HyperX Cloud II Core wireless headset free of charge. Otherwise, the retail box includes only the standard AC adapter and paperwork.
The standard one-year limited manufacturer warranty applies.
Input Devices — Familiar Omen Look And Feel
Keyboard
The WASD keys are now stylized with translucent keycaps for a more gamer aesthetic. All our comments about the keyboard on the Omen 16 still apply for the Omen Transcend 16.
Touchpad
Clickpad size has changed from 12.5 x 8 cm on the recent Omen 16 to a larger 13.5 x 8.6 cm on the Omen Transcend 16. Though responsive and very spacious for scrolling, feedback when clicking is shallow and could have been firmer for a more satisfying click.
Display — Mini-LED, 240 Hz, 1600p, 16:10, 1180 nits, 100% P3 Colors
Another major differentiating factor between the Omen Transcend 16 and Omen 16 is the new mini-LED panel option. Mini-LED combines the benefits of IPS (i.e., fast refresh rates and relative affordability) with the benefits of OLED (i.e., higher brightness levels and deeper black levels) to be a good middle-ground option between the three display technologies. The 1000 individually-lit zones behind the panel offer a visual experience close to the individually-lit pixels of OLED.
HP advertises a peak brightness of 1180 nits. Our independent measurements using the HDR brightness test would record a maximum of 1233 nits to confirm HP's claims. Note that this maximum is only available under certain HDR conditions similar to the Asus VivoBook as maximum brightness is otherwise limited to ~800 nits when displaying all white and no black. Even so, 800 nits is almost 2x brighter than most other IPS laptops.
When compared to the mini-LED display on the competing Lenovo Slim Pro 9 16, our HP display is of a lower native resolution (2560 x 1600 vs. 3200 x 2000) but with a higher refresh rate (240 Hz vs. 165 Hz).
|
Brightness Distribution: 95 %
Center on Battery: 791.1 cd/m²
Contrast: 19778:1 (Black: 0.04 cd/m²)
ΔE Color 4.37 | 0.5-29.43 Ø4.91, calibrated: 1.04
ΔE Greyscale 6.5 | 0.5-98 Ø5.2
87.6% AdobeRGB 1998 (Argyll 2.2.0 3D)
100% sRGB (Argyll 2.2.0 3D)
99.2% Display P3 (Argyll 2.2.0 3D)
Gamma: 2.28
HP Omen Transcend 16 AUOA3A6, Mini-LED, 2560x1600, 16" | Lenovo Legion Slim 7i 16 Gen 8 CSOT T3 MNG007DA2-3, IPS, 2560x1600, 16" | HP Omen 16-wf000 BOE0B7D, IPS, 2560x1440, 16.1" | Alienware x16 R1 BOE NE16NZ4, IPS, 2560x1600, 16" | Acer Nitro 16 AN16-41 BOE CQ NE16QDM-NY1, IPS, 2560x1600, 16" | Asus ROG Zephyrus M16 GU603Z BOE0A0B (BOE CQ NE160QDM-NY3), IPS, 2560x1600, 16" | |
---|---|---|---|---|---|---|
Display | -16% | -17% | 0% | -18% | -4% | |
Display P3 Coverage | 99.2 | 70.4 -29% | 69 -30% | 99.2 0% | 67.9 -32% | 92.8 -6% |
sRGB Coverage | 100 | 99.4 -1% | 99.2 -1% | 100 0% | 99.1 -1% | 98.5 -1% |
AdobeRGB 1998 Coverage | 87.6 | 72.5 -17% | 71.2 -19% | 88.6 1% | 69.9 -20% | 83.1 -5% |
Response Times | 62% | 75% | 72% | 70% | 68% | |
Response Time Grey 50% / Grey 80% * | 26.4 ? | 12 ? 55% | 4.6 ? 83% | 5.1 ? 81% | 11 ? 58% | 7.6 ? 71% |
Response Time Black / White * | 28.2 ? | 8.9 ? 68% | 9.7 ? 66% | 10.3 ? 63% | 5 ? 82% | 10 ? 65% |
PWM Frequency | 3506 ? | |||||
Screen | -95% | -86% | -67% | -95% | -79% | |
Brightness middle | 791.1 | 474.6 -40% | 310.9 -61% | 302.2 -62% | 520 -34% | 497 -37% |
Brightness | 800 | 445 -44% | 296 -63% | 285 -64% | 494 -38% | 481 -40% |
Brightness Distribution | 95 | 86 -9% | 91 -4% | 89 -6% | 91 -4% | 82 -14% |
Black Level * | 0.04 | 0.39 -875% | 0.35 -775% | 0.26 -550% | 0.39 -875% | 0.21 -425% |
Contrast | 19778 | 1217 -94% | 888 -96% | 1162 -94% | 1333 -93% | 2367 -88% |
Colorchecker dE 2000 * | 4.37 | 2.12 51% | 2.18 50% | 1.63 63% | 1.94 56% | 3.53 19% |
Colorchecker dE 2000 max. * | 10.39 | 4.73 54% | 3.58 66% | 4.13 60% | 5.62 46% | 6.15 41% |
Colorchecker dE 2000 calibrated * | 1.04 | 0.57 45% | 0.52 50% | 1.17 -13% | 0.74 29% | 3.53 -239% |
Greyscale dE 2000 * | 6.5 | 2.8 57% | 2.8 57% | 2.5 62% | 2.94 55% | 1.74 73% |
Gamma | 2.28 96% | 2.22 99% | 2.18 101% | 2.23 99% | 2.37 93% | 2.2 100% |
CCT | 6000 108% | 6542 99% | 6002 108% | 6590 99% | 6443 101% | 6418 101% |
Total Average (Program / Settings) | -16% /
-56% | -9% /
-48% | 2% /
-33% | -14% /
-55% | -5% /
-42% |
* ... smaller is better
The panel is not calibrated at factory. Color temperature is warmer than anticipated at 6000K and so colors at lower saturation levels are not as accurate as they could be. Calibrating the panel with our X-Rite colorimeter would increase color temperature to the standard 6500K for more stable colors across all saturation levels.
Display Response Times
↔ Response Time Black to White | ||
---|---|---|
28.2 ms ... rise ↗ and fall ↘ combined | ↗ 21.6 ms rise | |
↘ 6.6 ms fall | ||
The screen shows relatively slow response rates in our tests and may be too slow for gamers. In comparison, all tested devices range from 0.1 (minimum) to 240 (maximum) ms. » 73 % of all devices are better. This means that the measured response time is worse than the average of all tested devices (20.9 ms). | ||
↔ Response Time 50% Grey to 80% Grey | ||
26.4 ms ... rise ↗ and fall ↘ combined | ↗ 15 ms rise | |
↘ 11.4 ms fall | ||
The screen shows relatively slow response rates in our tests and may be too slow for gamers. In comparison, all tested devices range from 0.165 (minimum) to 636 (maximum) ms. » 33 % of all devices are better. This means that the measured response time is better than the average of all tested devices (32.8 ms). |
Screen Flickering / PWM (Pulse-Width Modulation)
Screen flickering / PWM detected | 3506 Hz | ≤ 100 % brightness setting | |
The display backlight flickers at 3506 Hz (worst case, e.g., utilizing PWM) Flickering detected at a brightness setting of 100 % and below. There should be no flickering or PWM above this brightness setting. The frequency of 3506 Hz is quite high, so most users sensitive to PWM should not notice any flickering. In comparison: 53 % of all tested devices do not use PWM to dim the display. If PWM was detected, an average of 8705 (minimum: 5 - maximum: 343500) Hz was measured. |
Flickering is present on all brightness levels. However, the relatively high frequency of 3506 Hz should make it a non-issue for most users. The flickering also has an unfortunate consequence of making response times more difficult to measure with precision.
Outdoor visibility is good under shade, but colors still become washed out when under brighter conditions or sunlight. The maximum brightness of ~800 nits is sustainable on battery power.
Performance — 13th Gen Intel Raptor Lake-HX
Testing Conditions
We set our unit to Performance mode via Windows and Performance mode again via the Omen Gaming Hub software prior to running the benchmarks below. Annoyingly, adjusting one power profile setting does not automatically adjust the other.
The MUX switch is accessible via Omen Gaming Hub as shown by the screenshots below. Thus, it is highly recommended that owners become familiar with the software as key features are toggled here. The performance profiles and buried under several submenus which is another annoying aspect of the software.
Advanced Optimus or Optimus 2.0 is not supported. A soft reboot is therefore required when switching between the iGPU and dGPU. G-Sync is supported on the internal display.
Processor
The Core i9-13900HX in the Omen Transcend 16 performs about 5 to 10 percent slower than the average laptop in our database equipped with the same processor. An extreme example is the Lenovo Legion Pro 7 which can be up to 20 percent faster than our HP even though they both ship with the Core i9-13900HX. Our Omen Transcend 16 still one of the fastest gaming laptops in the market, but processor performance could have certainly been a bit faster based on our time with other high-end gaming models.
Performance stability is otherwise excellent with no major throttling issues when running CineBench R15 xT in a loop.
Cinebench R15 Multi Loop
Cinebench R23: Multi Core | Single Core
Cinebench R20: CPU (Multi Core) | CPU (Single Core)
Cinebench R15: CPU Multi 64Bit | CPU Single 64Bit
Blender: v2.79 BMW27 CPU
7-Zip 18.03: 7z b 4 | 7z b 4 -mmt1
Geekbench 5.5: Multi-Core | Single-Core
HWBOT x265 Benchmark v2.2: 4k Preset
LibreOffice : 20 Documents To PDF
R Benchmark 2.5: Overall mean
CPU Performance Rating | |
Asus Zephyrus Duo 16 GX650PY-NM006W | |
Average Intel Core i9-13900HX | |
HP Omen Transcend 16 | |
Lenovo Legion Slim 7i 16 Gen 8 -1! | |
Alienware x16 R1 -1! | |
Lenovo Legion Pro 5 16ARX8 | |
HP Omen 16-wf000 -1! | |
Asus ROG Zephyrus M16 GU603Z | |
Lenovo Legion S7 16ARHA7 | |
Acer Nitro 16 AN16-41 | |
HP Omen 16-n0033dx | |
Dell Inspiron 16 Plus 7610-MHJ8F |
Blender / v2.79 BMW27 CPU | |
Dell Inspiron 16 Plus 7610-MHJ8F | |
HP Omen 16-n0033dx | |
Acer Nitro 16 AN16-41 | |
Lenovo Legion S7 16ARHA7 | |
Asus ROG Zephyrus M16 GU603Z | |
Lenovo Legion Pro 5 16ARX8 | |
HP Omen Transcend 16 | |
Average Intel Core i9-13900HX (101 - 153, n=21) | |
Asus Zephyrus Duo 16 GX650PY-NM006W |
* ... smaller is better
AIDA64: FP32 Ray-Trace | FPU Julia | CPU SHA3 | CPU Queen | FPU SinJulia | FPU Mandel | CPU AES | CPU ZLib | FP64 Ray-Trace | CPU PhotoWorxx
Performance Rating | |
Average Intel Core i9-13900HX | |
HP Omen Transcend 16 | |
Alienware x16 R1 | |
HP Omen 16-wf000 | |
Lenovo Legion Slim 7i 16 Gen 8 | |
Acer Nitro 16 AN16-41 | |
Asus ROG Zephyrus M16 GU603Z |
AIDA64 / FP32 Ray-Trace | |
Average Intel Core i9-13900HX (17589 - 27615, n=21) | |
HP Omen Transcend 16 | |
HP Omen 16-wf000 | |
Alienware x16 R1 | |
Lenovo Legion Slim 7i 16 Gen 8 | |
Acer Nitro 16 AN16-41 | |
Asus ROG Zephyrus M16 GU603Z |
AIDA64 / FPU Julia | |
Average Intel Core i9-13900HX (88686 - 137015, n=21) | |
HP Omen Transcend 16 | |
Acer Nitro 16 AN16-41 | |
HP Omen 16-wf000 | |
Alienware x16 R1 | |
Lenovo Legion Slim 7i 16 Gen 8 | |
Asus ROG Zephyrus M16 GU603Z |
AIDA64 / CPU SHA3 | |
Average Intel Core i9-13900HX (4362 - 7029, n=21) | |
HP Omen Transcend 16 | |
HP Omen 16-wf000 | |
Alienware x16 R1 | |
Lenovo Legion Slim 7i 16 Gen 8 | |
Asus ROG Zephyrus M16 GU603Z | |
Acer Nitro 16 AN16-41 |
AIDA64 / CPU Queen | |
Average Intel Core i9-13900HX (125644 - 141385, n=21) | |
HP Omen Transcend 16 | |
Lenovo Legion Slim 7i 16 Gen 8 | |
Alienware x16 R1 | |
Acer Nitro 16 AN16-41 | |
Asus ROG Zephyrus M16 GU603Z | |
HP Omen 16-wf000 |
AIDA64 / FPU SinJulia | |
Average Intel Core i9-13900HX (12334 - 17179, n=21) | |
HP Omen Transcend 16 | |
Acer Nitro 16 AN16-41 | |
HP Omen 16-wf000 | |
Alienware x16 R1 | |
Lenovo Legion Slim 7i 16 Gen 8 | |
Asus ROG Zephyrus M16 GU603Z |
AIDA64 / FPU Mandel | |
Average Intel Core i9-13900HX (43850 - 69202, n=21) | |
HP Omen Transcend 16 | |
Acer Nitro 16 AN16-41 | |
HP Omen 16-wf000 | |
Alienware x16 R1 | |
Lenovo Legion Slim 7i 16 Gen 8 | |
Asus ROG Zephyrus M16 GU603Z |
AIDA64 / CPU AES | |
Average Intel Core i9-13900HX (89413 - 237881, n=21) | |
Asus ROG Zephyrus M16 GU603Z | |
HP Omen Transcend 16 | |
HP Omen 16-wf000 | |
Alienware x16 R1 | |
Lenovo Legion Slim 7i 16 Gen 8 | |
Acer Nitro 16 AN16-41 |
AIDA64 / CPU ZLib | |
Average Intel Core i9-13900HX (1284 - 1958, n=21) | |
HP Omen Transcend 16 | |
HP Omen 16-wf000 | |
Lenovo Legion Slim 7i 16 Gen 8 | |
Alienware x16 R1 | |
Asus ROG Zephyrus M16 GU603Z | |
Acer Nitro 16 AN16-41 |
AIDA64 / FP64 Ray-Trace | |
Average Intel Core i9-13900HX (9481 - 15279, n=21) | |
HP Omen Transcend 16 | |
HP Omen 16-wf000 | |
Alienware x16 R1 | |
Lenovo Legion Slim 7i 16 Gen 8 | |
Acer Nitro 16 AN16-41 | |
Asus ROG Zephyrus M16 GU603Z |
AIDA64 / CPU PhotoWorxx | |
HP Omen Transcend 16 | |
Alienware x16 R1 | |
Average Intel Core i9-13900HX (42994 - 51994, n=21) | |
Asus ROG Zephyrus M16 GU603Z | |
HP Omen 16-wf000 | |
Acer Nitro 16 AN16-41 | |
Lenovo Legion Slim 7i 16 Gen 8 |
System Performance
PCMark results are just slightly ahead of the RTX 4080-powered Omen 16 except in Digital Content Creation due to our slower RTX 4070. We experienced no wake-from-sleep issues or BSODs unlike on our recent Lenovo Slim Pro 9i 16.
CrossMark: Overall | Productivity | Creativity | Responsiveness
PCMark 10 / Score | |
Lenovo Legion Slim 7i 16 Gen 8 | |
Alienware x16 R1 | |
HP Omen Transcend 16 | |
Asus ROG Zephyrus M16 GU603Z | |
HP Omen 16-wf000 | |
Average Intel Core i9-13900HX, NVIDIA GeForce RTX 4070 Laptop GPU (6956 - 8153, n=3) | |
Acer Nitro 16 AN16-41 |
PCMark 10 / Essentials | |
Lenovo Legion Slim 7i 16 Gen 8 | |
HP Omen Transcend 16 | |
Alienware x16 R1 | |
Average Intel Core i9-13900HX, NVIDIA GeForce RTX 4070 Laptop GPU (9865 - 11653, n=3) | |
Asus ROG Zephyrus M16 GU603Z | |
Acer Nitro 16 AN16-41 | |
HP Omen 16-wf000 |
PCMark 10 / Productivity | |
Lenovo Legion Slim 7i 16 Gen 8 | |
Asus ROG Zephyrus M16 GU603Z | |
Alienware x16 R1 | |
HP Omen Transcend 16 | |
Average Intel Core i9-13900HX, NVIDIA GeForce RTX 4070 Laptop GPU (9470 - 9850, n=3) | |
Acer Nitro 16 AN16-41 | |
HP Omen 16-wf000 |
PCMark 10 / Digital Content Creation | |
Alienware x16 R1 | |
Lenovo Legion Slim 7i 16 Gen 8 | |
HP Omen 16-wf000 | |
HP Omen Transcend 16 | |
Asus ROG Zephyrus M16 GU603Z | |
Average Intel Core i9-13900HX, NVIDIA GeForce RTX 4070 Laptop GPU (9776 - 13370, n=3) | |
Acer Nitro 16 AN16-41 |
CrossMark / Overall | |
Lenovo Legion Slim 7i 16 Gen 8 | |
HP Omen Transcend 16 | |
Average Intel Core i9-13900HX, NVIDIA GeForce RTX 4070 Laptop GPU (1842 - 2029, n=3) | |
Alienware x16 R1 | |
Asus ROG Zephyrus M16 GU603Z | |
HP Omen 16-wf000 | |
Acer Nitro 16 AN16-41 |
CrossMark / Productivity | |
Lenovo Legion Slim 7i 16 Gen 8 | |
Alienware x16 R1 | |
HP Omen Transcend 16 | |
Asus ROG Zephyrus M16 GU603Z | |
Average Intel Core i9-13900HX, NVIDIA GeForce RTX 4070 Laptop GPU (1700 - 1872, n=3) | |
HP Omen 16-wf000 | |
Acer Nitro 16 AN16-41 |
CrossMark / Creativity | |
HP Omen Transcend 16 | |
Average Intel Core i9-13900HX, NVIDIA GeForce RTX 4070 Laptop GPU (2088 - 2316, n=3) | |
Lenovo Legion Slim 7i 16 Gen 8 | |
Alienware x16 R1 | |
Asus ROG Zephyrus M16 GU603Z | |
HP Omen 16-wf000 | |
Acer Nitro 16 AN16-41 |
CrossMark / Responsiveness | |
Alienware x16 R1 | |
Lenovo Legion Slim 7i 16 Gen 8 | |
Asus ROG Zephyrus M16 GU603Z | |
Average Intel Core i9-13900HX, NVIDIA GeForce RTX 4070 Laptop GPU (1557 - 1752, n=3) | |
HP Omen Transcend 16 | |
HP Omen 16-wf000 | |
Acer Nitro 16 AN16-41 |
PCMark 10 Score | 8153 points | |
Help |
AIDA64 / Memory Copy | |
HP Omen Transcend 16 | |
Average Intel Core i9-13900HX (67716 - 78835, n=21) | |
Alienware x16 R1 | |
HP Omen 16-wf000 | |
Asus ROG Zephyrus M16 GU603Z | |
Acer Nitro 16 AN16-41 | |
Lenovo Legion Slim 7i 16 Gen 8 |
AIDA64 / Memory Read | |
HP Omen Transcend 16 | |
Average Intel Core i9-13900HX (73998 - 88462, n=21) | |
Alienware x16 R1 | |
HP Omen 16-wf000 | |
Asus ROG Zephyrus M16 GU603Z | |
Acer Nitro 16 AN16-41 | |
Lenovo Legion Slim 7i 16 Gen 8 |
AIDA64 / Memory Write | |
Alienware x16 R1 | |
HP Omen Transcend 16 | |
Average Intel Core i9-13900HX (65472 - 77045, n=21) | |
HP Omen 16-wf000 | |
Asus ROG Zephyrus M16 GU603Z | |
Acer Nitro 16 AN16-41 | |
Lenovo Legion Slim 7i 16 Gen 8 |
AIDA64 / Memory Latency | |
Alienware x16 R1 | |
Acer Nitro 16 AN16-41 | |
Asus ROG Zephyrus M16 GU603Z | |
HP Omen Transcend 16 | |
HP Omen 16-wf000 | |
Average Intel Core i9-13900HX (80.4 - 91.1, n=21) | |
Lenovo Legion Slim 7i 16 Gen 8 |
* ... smaller is better
DPC Latency
LatencyMon reveals minor DPC issues when opening multiple browser tabs of our homepage. 4K video playback at 60 FPS is otherwise perfect with no dropped frames at all.
DPC Latencies / LatencyMon - interrupt to process latency (max), Web, Youtube, Prime95 | |
Lenovo Legion Slim 7i 16 Gen 8 | |
HP Omen 16-wf000 | |
HP Omen Transcend 16 | |
Alienware x16 R1 | |
Acer Nitro 16 AN16-41 | |
Asus ROG Zephyrus M16 GU603Z |
* ... smaller is better
Storage Devices
The Omen Transcend 16 ships with the same SK hynix PC801 SSD as found on the Omen 16. The drive exhibits no performance throttling issues and so it is able to sustain a high maximum transfer rate of almost 7000 MB/s without any problems during our stress test.
Drive Performance Rating - Percent | |
Alienware x16 R1 | |
Lenovo Legion Slim 7i 16 Gen 8 | |
Asus ROG Zephyrus M16 GU603Z | |
HP Omen 16-wf000 | |
Acer Nitro 16 AN16-41 | |
HP Omen Transcend 16 |
* ... smaller is better
Disk Throttling: DiskSpd Read Loop, Queue Depth 8
GPU Performance — 130 W TGP GPU
Graphics performance is comparable to the average laptop in our database equipped with the same mobile RTX 4070 GPU. Nonetheless, the Lenovo Legion Slim 7i 16 G8 with the same GPU is still about 10 percent faster due in part to its slightly higher TGP target (145 W vs. 130 W).
Downgrading to the RTX 4060 SKU would decrease graphics performance by about 10 to 20 percent. Meanwhile, the RTX 4080 can increase performance significantly by 40 to 50 percent, but the Omen Transcend 16 is limited to the RTX 4070 for now. In contrast, the regular Omen 16 can be configured with GPU options greater than the RTX 4070.
Running on Balanced mode instead of Performance mode would decrease performance just slightly as shown by our Fire Strike table below. This is important to note since the fan noise differences between Balanced and Performance modes can be significant which we will show in our System Noise section.
Power Profile | Graphics Score | Physics Score | Combined Score |
Balanced | 26079 (-5%) | 33864 (-0%) | 8226 (-24%) |
Performance | 27343 | 33936 | 10832 |
3DMark 11 Performance | 32031 points | |
3DMark Fire Strike Score | 24341 points | |
3DMark Time Spy Score | 12436 points | |