NVIDIA Quadro K510M vs NVIDIA Quadro K1000M

NVIDIA Quadro K510M

► remove NVIDIA Quadro K510M

The NVIDIA Quadro K510M is a DirectX 11 and OpenGL 4.3 compatible graphics card for affordable mobile workstations. It is a Kepler-based GPU built on the GK107 chip with 192 out of 384 shader cores activated and is manufactured in 28nm at TSMC. The Quadro K510M is built for the Intel Shark Bay generation (Haswell) and is a successor to the Quadro K500M (Chief River platform). As a new feature, PCIe 3.0 is supported for the first time. The K510M usually comes with 1 GB GDDR5 VRAM clocked at 600 MHz (2400 MHz effective, 19.2 GB/s). 

The Quadro series offers certified drivers that are optimized for stability and performance in professional applications like CAD or DCC. OpenGL performance, for example, should be significantly better than with GeForce graphics cards of similar specifications.

Architecture

The Kepler architecture is the successor to the Fermi architecture that first appeared in laptops with the GeForce 400M series. The GK107 Kepler core offers two shader blocks, called SMX, that are clocked at the same speed as the central core. In the K510M, only one block is active leading to the 192 CUDA cores. Although more shader cores are available in the Kepler architecture as compared to the Fermi design, the Kepler shaders are still expected to be up to twice as power efficient. However, due to the missing hot clock of the shader domain, two shaders of a Kepler chip offer similar performance to just one shader of a Fermi chip (as the latter is clocked twice as fast).

Performance

The performance should be clearly above the old Quadro K500M, but somewhat below the higher clocked Quadro K610M. This would place the K510M between the consumer GPUs GeForce 710M and GT 720M. However, the exact core clock has not yet been confirmed. Nevertheless, most demanding games of 2013 will run fluently only in low detail settings.

Features

The improved feature set now includes support for up to 4 active displays. Furthermore, high resolution monitors of up to 3840 x 2160 pixels can now be connected using DisplayPort 1.2 or HDMI 1.4a if available. HD-Audio codecs, such as Dolby TrueHD and DTS-HD, can be transmitted via bitstream mode through the HDMI port. However, as most laptops will feature Optimus, the integrated GPU will likely have direct control over the display ports and may limit the feature set available by the Nvidia Kepler cards. Please note: The K510M does not supprt 3D Vision Pro.

Using CUDA or OpenCL 1.2, the cores of the Quadro K510M can be used for general calculations.

The 5th generation PureVideo HD video processor (VP5) is also integrated in the GK107 core and offers hardware decoding of HD videos. Common codecs such as MPEG-1/2, MPEG-4 ASP, H.264 and VC1/WMV9 are fully supported up to 4K resolutions while VC1 and MPEG-4 are supported up to 1080p. Two streams can be decoded in parallel for features such as Picture-in-Picture. Another novelty is the inclusion of a dedicated video encoding engine similar to Intel QuickSync that can be accessed by the NVENC API.

The power consumption of the Quadro K510M is rated at a TGP of 30 W including the board and memory components. Therefore, the card is suited for medium-sized notebooks with 15-inch displays or greater.

NVIDIA Quadro K1000M

► remove NVIDIA Quadro K1000M

The NVIDIA Quadro K1000M (or Quadro K1100M, due to the internal code name 1100M) is a mid-range, DirectX 11.1-compatible graphics card for mobile workstations. It is a Kepler-based GPU built on the GK107 architecture and is manufactured in 28nm at TSMC. Compared to the K2000M, the K1000M only features 192 shader cores of 384. The Quadro K1000M is built for the Intel Chief River generation (Ivy Bridge) and is the successor to the Fermi-based Quadro 1000M (Huron River platform).

The Quadro series offers certified drivers that are optimized for stability and performance in professional applications like CAD or DCC. OpenGL performance, for example, should be significantly better than GeForce graphics cards of similar specifications.

Architecture

The Kepler architecture is the successor to the Fermi architecture that first appeared in laptops with the GeForce 400M series. The GK107 Kepler core offers two shader blocks, called SMX, each with 192 shaders for a total of 384 shader cores that are clocked at the same speed as the central core. The K1000M, however, offers only one SMX with 192 shaders. Although more shader cores are available in the Kepler architecture as compared to the Fermi design, the Kepler shaders are still expected to be up to twice as power efficient. However, due to the missing hot clock of the shader domain, two shaders of a Kepler chip are about as fast as one shader of a Fermi chip (as the latter is clocked twice as fast).

PCIe 3.0 is now supported by the mobile Kepler series and an optional Turbo mode can automatically overclock the Nvidia card by a theoretical 15 percent if the laptop cooling system allows it. The implementation of this boost mode is done in the BIOS, but it is ultimately dependent upon the manufacturer of the laptop.

Performance

The performance is similar to the consumer GeForce GT 630M and above the older Quadro 1000M. Most 3D games of 2012 can be played fluently in medium settings an resolutions.

Features

The improved feature set now includes support for up to 4 active displays. Furthermore, high resolution monitors of up to 3840x2160 pixels can now be connected using DisplayPort 1.2 or HDMI 1.4a if available. HD-Audio codecs, such as Dolby TrueHD and DTS-HD, can be transmitted via bitstream mode through the HDMI port. However, as most laptops will feature Optimus, the integrated GPU will likely have direct control over the display ports and may limit the feature set available by the Nvidia Kepler cards.

The 5th generation PureVideo HD video processor (VP5) is also integrated in the GK107 core and offers hardware decoding of HD videos. Common codecs such as MPEG-1/2, MPEG-4 ASP, H.264 and VC1/WMV9 are fully supported up to 4K resolutions while VC1 and MPEG-4 are supported up to 1080p. Two streams can be decoded in parallel for features such as Picture-in-Picture. Another novelty is the inclusion of a dedicated video encoding engine similar to Intel QuickSync that can be accessed by the NVENC API.

The power consumption of the K1000M is rated at 45 Watt (TGP according to Nvidia) and is therefore suited for medium-sized notebooks 15-inches or greater.

NVIDIA Quadro K510MNVIDIA Quadro K1000M
ManufacturerNVIDIANVIDIA
Quadro K Series
Quadro K5100M (compare) 1536 @ 771 MHz256 Bit @ 3600 MHz
Quadro K5000M (compare) 1344 @ 706 MHz256 Bit @ 3000 MHz
Quadro K4100M (compare) 1152 @ 706 MHz256 Bit @ 3200 MHz
Quadro K4000M (compare) 960 @ 600 MHz256 Bit @ 2800 MHz
Quadro K3100M (compare) 768 @ 706 MHz256 Bit @ 3200 MHz
Quadro K3000M (compare) 576 @ 654 MHz256 Bit @ 2800 MHz
Quadro K2100M (compare) 576 @ 667 MHz128 Bit @ 3000 MHz
Quadro K1100M (compare) 384 @ 705 MHz128 Bit @ 2800 MHz
Quadro K620M (compare) 384 @ 1029 - 1124 (Boost) MHz64 Bit @ 2000 MHz
Quadro K2000M (compare) 384 @ 745 MHz128 Bit @ 1800 MHz
Quadro K1000M 192 @ 850 MHz128 Bit @ 1800 MHz
Quadro K610M (compare) 192 @ 954 MHz64 Bit @ 2600 MHz
Quadro K510M 192 @ 846 MHz64 Bit @ 2400 MHz
Quadro K500M (compare) 192 @ 850 MHz64 Bit @ 1800 MHz
Quadro K5100M (compare) 1536 @ 771 MHz256 Bit @ 3600 MHz
Quadro K5000M (compare) 1344 @ 706 MHz256 Bit @ 3000 MHz
Quadro K4100M (compare) 1152 @ 706 MHz256 Bit @ 3200 MHz
Quadro K4000M (compare) 960 @ 600 MHz256 Bit @ 2800 MHz
Quadro K3100M (compare) 768 @ 706 MHz256 Bit @ 3200 MHz
Quadro K3000M (compare) 576 @ 654 MHz256 Bit @ 2800 MHz
Quadro K2100M (compare) 576 @ 667 MHz128 Bit @ 3000 MHz
Quadro K1100M (compare) 384 @ 705 MHz128 Bit @ 2800 MHz
Quadro K620M (compare) 384 @ 1029 - 1124 (Boost) MHz64 Bit @ 2000 MHz
Quadro K2000M (compare) 384 @ 745 MHz128 Bit @ 1800 MHz
Quadro K1000M 192 @ 850 MHz128 Bit @ 1800 MHz
Quadro K610M (compare) 192 @ 954 MHz64 Bit @ 2600 MHz
Quadro K510M 192 @ 846 MHz64 Bit @ 2400 MHz
Quadro K500M (compare) 192 @ 850 MHz64 Bit @ 1800 MHz
ArchitectureKeplerKepler
192 - 192 -
Core846 MHz850 MHz
Memory2400 MHz1800 MHz
Bus64 Bit128 Bit
MemoryGDDR5DDR3
Max. Memory1024 MB2048 MB
nono
DirectXDirectX 11, 5.0DirectX 11.1, 5.0
Transistors1270 Million
Technology28 nm28 nm
FeaturesOptimus, PhysX, Verde Drivers, CUDA, OpenCL 1.2, 3DTV PlayOptimus, PhysX, Verde Drivers, CUDA, 3D Vision, 3DTV Play
Size
Introduced23.07.2013 01.06.2012
Manufacturerhttp://www.nvidia.de/page/quadrofx_go.html
CodenameN14P-Q1

3DMark 11 - Performance 1280x720
min: 1200     avg: 1232     median: 1232 (4%)     max: 1264 points
3DMark 11 - Performance GPU 1280x720
min: 1082     avg: 1102     median: 1102 (2%)     max: 1122 points
3DMark Vantage
P Result 1280x1024 + NVIDIA Quadro K1000M
P GPU no PhysX 1280x1024 + NVIDIA Quadro K1000M
3DMark 06 Standard 1280x1024 + NVIDIA Quadro K1000M
Unigine Heaven 2.1 - high, Tesselation (normal), DirectX11 1280x1024
15.4 fps (7%)
SPECviewperf 11
Siemens NX 1920x1080 + NVIDIA Quadro K1000M
Tcvis 1920x1080 + NVIDIA Quadro K1000M
SolidWorks 1920x1080 + NVIDIA Quadro K1000M
Pro/ENGINEER 1920x1080 + NVIDIA Quadro K1000M
Maya 1920x1080 + NVIDIA Quadro K1000M
Lightwave 1920x1080 + NVIDIA Quadro K1000M
Ensight 1920x1080 + NVIDIA Quadro K1000M
Catia 1920x1080 + NVIDIA Quadro K1000M
Windows 7 Experience Index - Gaming graphics
min: 6.6     avg: 6.7     median: 6.7 (85%)     max: 6.8 points
Windows 7 Experience Index - Graphics
min: 6.6     avg: 6.7     median: 6.7 (85%)     max: 6.8 points
Cinebench R10 Shading 32Bit + NVIDIA Quadro K1000M
Cinebench R11.5 OpenGL 64Bit + NVIDIA Quadro K1000M

Average Benchmarks NVIDIA Quadro K1000M → 100%

-
-
* Smaller numbers mean a higher performance
1 This benchmark is not used for the average calculation

low 1024x768
Quadro K1000M:
66 108 ~ 87 fps
med. 1366x768
Quadro K1000M:
26 34 ~ 30 fps
high 1366x768
Quadro K1000M:
21 23 ~ 22 fps
ultra 1920x1080
Quadro K1000M:
11 14 ~ 13 fps
Quadro K1000M:
»
Torchlight 2

Torchlight 2

2012
low 1024x768
Quadro K1000M:
114  fps
med. 1366x768
Quadro K1000M:
91  fps
ultra 1920x1080
Quadro K1000M:
53  fps
Quadro K1000M:
»
low 1024x768
Quadro K1000M:
92  fps
med. 1366x768
Quadro K1000M:
54  fps
high 1366x768
Quadro K1000M:
33  fps
ultra 1920x1080
Quadro K1000M:
10  fps
Quadro K1000M:
»
low 1024x768
Quadro K1000M:
81 84 ~ 83 fps
med. 1366x768
Quadro K1000M:
54 55 ~ 55 fps
high 1366x768
Quadro K1000M:
46 49 ~ 48 fps
ultra 1920x1080
Quadro K1000M:
25 28 ~ 27 fps
Quadro K1000M:
»
Anno 2070

Anno 2070

2011
low 1024x768
Quadro K1000M:
64 65 ~ 65 fps
med. 1366x768
Quadro K1000M:
25 26 ~ 26 fps
high 1366x768
Quadro K1000M:
19 19 ~ 19 fps
ultra 1920x1080
Quadro K1000M:
9  fps
Quadro K1000M:
»
low 1024x768
Quadro K1000M:
92  fps
med. 1366x768
Quadro K1000M:
65  fps
high 1366x768
Quadro K1000M:
30  fps
ultra 1920x1080
Quadro K1000M:
14  fps
Quadro K1000M:
»
low 1024x768
Quadro K1000M:
82  fps
high 1366x768
Quadro K1000M:
30  fps
ultra 1920x1080
Quadro K1000M:
14  fps
Quadro K1000M:
»
Total War: Shogun 2

Total War: Shogun 2

2011
low 1024x768
Quadro K1000M:
112  fps
med. 1280x720
Quadro K1000M:
21.5  fps
ultra 1920x1080
Quadro K1000M:
7.1  fps
Quadro K1000M:
»
low 1024x768
Quadro K1000M:
254  fps
med. 1360x768
Quadro K1000M:
48  fps
high 1360x768
Quadro K1000M:
30  fps
ultra 1920x1080
Quadro K1000M:
14  fps
Quadro K1000M:
»
low 800x600
Quadro K1000M:
52  fps
med. 1360x768
Quadro K1000M:
28  fps
high 1600x900
Quadro K1000M:
9  fps
Quadro K1000M:
»
Anno 1404

Anno 1404

2009
low 1024x768
Quadro K1000M:
273  fps
ultra 1280x1024
Quadro K1000M:
31  fps
Quadro K1000M:
»
Sims 3

Sims 3

2009
low 800x600
Quadro K1000M:
693  fps
med. 1024x768
Quadro K1000M:
129  fps
high 1280x1024
Quadro K1000M:
68  fps
Quadro K1000M:
»
World of Warcraft

World of Warcraft

2005
low 800x600
Quadro K1000M:
98 105 ~ 102 fps
med. 1024x768
Quadro K1000M:
112 123 ~ 118 fps
high 1280x1024
Quadro K1000M:
31 33 ~ 32 fps
Quadro K1000M:
»

Add one or more devices and compare

In the following list you can select (and also search for) devices that should be added to the comparison. You can select more than one device.

restrict list:

show all (including archived), 2019, 2018
v1.8.1a
Please share our article, every link counts!
> Notebook / Laptop Reviews and News > Benchmarks / Tech > Graphics Card Comparison - Head 2 Head
Redaktion, 2017-09- 8 (Update: 2017-09-11)