NVIDIA GeForce GTX 260M SLI vs NVIDIA GeForce GTX 285M

NVIDIA GeForce GTX 260M SLI

► remove NVIDIA GeForce GTX 260M SLI

The Nvidia GeForce GTX 260M SLI is a combination of two Nvidia GeForce GTX 260M graphics cards for laptops linked together in SLI mode. The combination can be up to 40% faster than a single GTX 260M if given the proper game or driver support. In fact,some games may even run slower under SLI than with a single 260M if driver support is poor. Regardless, current consumption is twice as high as a single 260M. Notably, Nvidia drivers support the deactivation of SLI to save power. This is in contrast to the Catalyst drivers of the 4870 X2 at the time of our review.

The graphics memory of both cards can't be added and compared to single cards, as each card stores the same information. Therefore, a GTX 260M SLI with 2x512 graphics memory only counts as 512 MB for games.

As all SLI combinations, the GeForce 260M SLI may suffer from noticeable micro stuttering at frame rates between 20 to 30 fps. This is due to the inconsistent delays between subsequent frames being rendered and shown onscreen. As a result, an SLI combination may need higher frame rates for fluent gameplay.

Similar to other cards with DirectX 10 capabilities, the GeForce GTX 260M SLI combination renders 3D images using "Unified Shaders". Dedicated pixel shaders and vertex shaders have been dropped in favor of 2x112 stream processors for rendering graphic work that would have normally been done by specialized pixel and vertex shaders. Furthermore, the shader units are higher clocked than the chip at 1375 MHz.

The performance of the GTX 260M SLI is in the region of a single GTX 260M, but can be about 40 percent higher depending on application and driver support. A single GTX 260M is only a bit faster than a 9800M GTX due to the higher clock speed. For current DirectX 10 games like Crysis, World in Conflict, Bioshock or Age of Conan, the performance of this graphics card is sufficient with medium and high details. Older games and less demanding ones run fluently with high resolutions and full details. The memory component is up to 2x1024 MB GDDR3 with speeds up to 950MHz in MXM 3.0 boards or up to 800 MHz in MXM 2.0 boards.

An advantage of the GeForce GTX 260M SLI is the integrated PureVideo HD video processor. As a result, it is able to decode/encode H.264-, VC-1-, MPEG2- and WMV9 video material that would have otherwise been processed by the CPU. This ultimately allows the CPU to concentrate more on other tasks and programs simultaneously.

Both chips also support PhysX and CUDA applications. A single GTX 260M can also be used to calculate PhysX effects if supported by the game or application.

HybridPower is a technique to choose between the integrated (if available) and dedicated graphics core for power-saving purposes. So far, this works only in Windows Vista. Up to now, the user had to use a tool to switch between the GPUs. In the near future, Nvidia intends to be able to switch GPUs automatically in the drivers (now known as Optimus Technology, which is not supported by the GTX 260M SLI). GeForceBoost is not supported with this card as there would be no performance gain if one were to combine the integrated GPU with the dedicated 460M SLI.

The current consumption of up to 2x75 = 150 Watts (including the MXM board and VRAM) allows the use of the SLI cards only in laptops with a strong cooling system. Therefore, the GTX 260M SLI can be found only in heavier and larger desktop replacement (DTR) notebooks.

Compared with desktop graphics cards, the performance of the GTX 260M SLI is about on par with the GeForce 9800 GT SLI (600/1500/900).

NVIDIA GeForce GTX 285M

► remove NVIDIA GeForce GTX 285M

The NVIDIA GeForce GTX 285M is a high-end graphic card of the 200M series based on the G92b core and most similar to the Desktop GeForce 9800 GTX+. Therefore the 285M cannot be directly compared to the Desktop GTX 285. The chip is produced in a 55nm fabrication process, which is a step up from the 65nm process of the GTX 9800M. Its 128 pipelines are all enabled as well, as opposed to only 112 pipelines of the GTX 9800M. Compared to the GTX 280M, the GTX 285M features a slightly higher clock speed and is therefore only marginally faster (3-6% on average).

An innovation in the 200M series is the much accelerated switch times if using Hybrid Power (lower than 1 second compared to 7 seconds at the 9800M GTX).

Similar to all other cards with native DirectX 10 capabilities, the GeForce GTX 285M renders 3D images using "Unified Shaders". In other words, there are no longer any more dedicated pixel shaders or vertex shaders. Instead, new stream processors (128 of them in the 285M) now process most of the heavy graphics loading that would have otherwise been done by dedicated pixel and vertex shaders. In fact, the shader units are clocked higher than the core chip itself.

As previously mentioned, the GTX 285M is about 3-6% faster than the GTX280M due to slightly higher clock speeds. This means that notebooks equipped with the GTX 285M should run all modern and demanding games (as of 2009) in high details and resolutions. Only very demanding games, like Crysis Warhead or Metro 2033, may become unplayable if at maximum graphical settings.

Games with PhysX support (e.g., Mirror's Edge) may benefit from improved performance out of the 285M. Still, the Mobility Radeon HD 5870 is arguably a faster and better value single core GPU for laptops.

An advantage of the GeForce GTX 285M is the integrated PureVideo HD video processor (VP2). With this software feature, the 285M can assist the CPU in the decoding of H.264-, VC-1-, MPEG2- or WMV9 videos. 

HybridPower is an Nvidia power-saving technology for Windows Vista used for switching between integrated and dedicated graphics cards. In the future, Nvidia wants this switch to occur automatically with drivers (now known as Optimus). GeForceBoost is not supported with the 285M, as there would be no performance gain in combining the integrated GPU with the dedicated video card.  

The power consumption can be up to 75 Watts (if including the MXM board and VRAM). As a result, the 285M is usually reserved for larger desktop replacement (DTR) laptops with powerful cooling solutions.

In June 2010, the GeForce GTX 480M (mobile Fermi) was announced with a revamped architecture compared to the GTX 285M. Compared to the 285M, the Fermi core will support DirectX 11 and offer better performance at the cost of higher power consumption levels and possibly higher heat output. 

If compared to desktop graphics cards, the performance of the 285M can be considered somewhere in between the 9800 GT and the 9800 GTX, the latter of which is clocked considerably higher (675/1675/1100 MHz) in comparison.

NVIDIA GeForce GTX 260M SLINVIDIA GeForce GTX 285M
ManufacturerNVIDIANVIDIA
GeForce GTX 200M Series
GeForce GTX 285M SLI (compare) 256 @ 576 MHz256 Bit @ 1020 MHz
GeForce GTX 280M SLI (compare) 256 @ 585 MHz256 Bit @ 950 MHz
GeForce GTX 260M SLI 224 @ 550 MHz256 Bit @ 950 MHz
GeForce GTX 285M 128 @ 576 MHz256 Bit @ 1020 MHz
GeForce GTX 280M (compare) 128 @ 585 MHz256 Bit @ 950 MHz
GeForce GTX 260M (compare) 112 @ 550 MHz256 Bit @ 950 MHz
GeForce GTX 285M SLI (compare) 256 @ 576 MHz256 Bit @ 1020 MHz
GeForce GTX 280M SLI (compare) 256 @ 585 MHz256 Bit @ 950 MHz
GeForce GTX 260M SLI 224 @ 550 MHz256 Bit @ 950 MHz
GeForce GTX 285M 128 @ 576 MHz256 Bit @ 1020 MHz
GeForce GTX 280M (compare) 128 @ 585 MHz256 Bit @ 950 MHz
GeForce GTX 260M (compare) 112 @ 550 MHz256 Bit @ 950 MHz
CodenameNB9E-GTXN10E-GTX1
ArchitectureG9xG9x
224 - 128 -
Core550 MHz576 MHz
Shader1375 MHz1500 MHz
Memory950 MHz1020 MHz
Bus256 Bit256 Bit
MemoryGDDR3GDDR3
Max. Memory2048 MB1024 MB
nono
DirectXDirectX 10, 4.0DirectX 10, 4.0
Transistors1508 Million754 Million
Technology55 nm55 nm
FeaturesHybridPower, PureVideo HD, CUDA, PhysX readyHybridPower, PureVideo HD (VP2), CUDA, PhysX ready
Size
Introduced02.03.2009 02.03.2009
MXM 3MXM 3
Manufacturerhttp://www.nvidia.com/object/product_gef...http://www.nvidia.com/object/product_gef...

3DMark Vantage
P Result 1280x1024 + NVIDIA GeForce GTX 260M SLI
P Result 1280x1024 + NVIDIA GeForce GTX 285M
P GPU no PhysX 1280x1024 + NVIDIA GeForce GTX 260M SLI
P GPU no PhysX 1280x1024 + NVIDIA GeForce GTX 285M
3DMark 2001SE - Standard 1024x768
30910 Points (32%)
3DMark 03 - Standard 1024x768
min: 47633     avg: 49181.5     median: 49181 (26%)     max: 50730 Points
37372 Points (20%)
3DMark 05 - Standard 1024x768
min: 12820     avg: 14509.5     median: 14509 (27%)     max: 16199 Points
min: 18935     avg: 18964.5     median: 18964 (36%)     max: 18994 Points
3DMark 06 Standard 1280x1024 + NVIDIA GeForce GTX 260M SLI
Standard 1280x1024 + NVIDIA GeForce GTX 285M
Windows 7 Experience Index - Gaming graphics
min: 6     avg: 7.1     median: 7 (100%)     max: 7 points
Windows 7 Experience Index - Graphics
min: 6     avg: 7.1     median: 7 (100%)     max: 7 points
Cinebench R10 Shading 32Bit + NVIDIA GeForce GTX 260M SLI
Shading 32Bit + NVIDIA GeForce GTX 285M
Cinebench R11.5 OpenGL 64Bit + NVIDIA GeForce GTX 285M

Average Benchmarks NVIDIA GeForce GTX 260M SLI → 100%

Average Benchmarks NVIDIA GeForce GTX 285M → 98%

-
-
* Smaller numbers mean a higher performance
1 This benchmark is not used for the average calculation

Mafia 2

Mafia 2

2010
low 800x600
GeForce GTX 285M:
54.9 fps  fps
med. 1024x768
GeForce GTX 285M:
53.8 fps  fps
high 1360x768
GeForce GTX 285M:
52.2 fps  fps
ultra 1920x1080
GeForce GTX 285M:
36.9 fps  fps
GeForce GTX 285M:
»
low 1024x768
GeForce GTX 285M:
184 fps  fps
ultra 1920x1080
GeForce GTX 285M:
32.8 fps  fps
GeForce GTX 285M:
»
low 800x600
GeForce GTX 285M:
66.3 fps  fps
med. 1360x768
GeForce GTX 285M:
40.8 fps  fps
high 1600x900
GeForce GTX 285M:
21.4 fps  fps
ultra 1920x1080
GeForce GTX 285M:
13.7 fps  fps
GeForce GTX 285M:
»
high 1366x768
GeForce GTX 285M:
47.2  fps
ultra 1920x1080
GeForce GTX 285M:
26  fps
GeForce GTX 285M:
»
med. 1024x768
GeForce GTX 285M:
70  fps
high 1366x768
GeForce GTX 285M:
61.2  fps
ultra 1920x1080
GeForce GTX 285M:
43.3  fps
GeForce GTX 285M:
»
Risen

Risen

2009
med. 1024x768
GeForce GTX 285M:
59.2  fps
high 1366x768
GeForce GTX 285M:
43.4  fps
ultra 1920x1080
GeForce GTX 285M:
30.3  fps
GeForce GTX 285M:
»
Need for Speed Shift

Need for Speed Shift

2009
med. 1024x768
GeForce GTX 285M:
75.8  fps
high 1366x768
GeForce GTX 285M:
65.3  fps
ultra 1920x1080
GeForce GTX 285M:
38.6  fps
GeForce GTX 285M:
»
Colin McRae: DIRT 2

Colin McRae: DIRT 2

2009
med. 1024x768
GeForce GTX 285M:
99.3  fps
high 1360x768
GeForce GTX 285M:
66.2  fps
ultra 1920x1080
GeForce GTX 285M:
32.9  fps
GeForce GTX 285M:
»
Anno 1404

Anno 1404

2009
ultra 1280x1024
GeForce GTX 285M:
46.7  fps
GeForce GTX 285M:
»
F.E.A.R. 2

F.E.A.R. 2

2009
high 1280x1024
GeForce GTX 285M:
89.2  fps
ultra 1920x1080
GeForce GTX 285M:
47.6  fps
GeForce GTX 285M:
»
Crysis - GPU Benchmark

Crysis - GPU Benchmark

2007
low 1024x768
100%
GeForce GTX 260M SLI:
102  fps
med. 1024x768
100%
GeForce GTX 260M SLI:
64  fps
high 1024x768
100%
GeForce GTX 260M SLI:
51  fps
99%
GeForce GTX 285M:
50.3  fps
ultra 1920x1080
GeForce GTX 285M:
13.9  fps
GeForce GTX 260M SLI:
»
GeForce GTX 285M:
»
Crysis - CPU Benchmark

Crysis - CPU Benchmark

2007
low 1024x768
100%
GeForce GTX 260M SLI:
132  fps
med. 1024x768
100%
GeForce GTX 260M SLI:
65  fps
high 1024x768
100%
GeForce GTX 260M SLI:
52  fps
89%
GeForce GTX 285M:
46.4  fps
ultra 1920x1080
GeForce GTX 285M:
13  fps
GeForce GTX 260M SLI:
»
GeForce GTX 285M:
»
World in Conflict - Benchmark

World in Conflict - Benchmark

2007
low 800x600
GeForce GTX 285M:
126 fps  fps
med. 1024x768
GeForce GTX 285M:
84 fps  fps
high 1024x768
GeForce GTX 285M:
53 fps  fps
GeForce GTX 285M:
»
Call of Juarez Benchmark

Call of Juarez Benchmark

2006
high 1024x768
GeForce GTX 285M:
36.5 fps  fps
GeForce GTX 285M:
»

Average Gaming NVIDIA GeForce GTX 260M SLI → 100%

Average Gaming NVIDIA GeForce GTX 285M → 94%

Add one or more devices and compare

In the following list you can select (and also search for) devices that should be added to the comparison. You can select more than one device.

restrict list:

show all (including archived), 2019, 2018
v1.8.1a
Please share our article, every link counts!
> Notebook / Laptop Reviews and News > Benchmarks / Tech > Graphics Card Comparison - Head 2 Head
Redaktion, 2017-09- 8 (Update: 2017-09-11)